摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

methyl 4-(4-oxo-4H-chromen-2-yl)benzoate | 20093-85-0

中文名称
——
中文别名
——
英文名称
methyl 4-(4-oxo-4H-chromen-2-yl)benzoate
英文别名
methyl 4-(4-oxochromen-2-yl)benzoate
methyl 4-(4-oxo-4H-chromen-2-yl)benzoate化学式
CAS
20093-85-0
化学式
C17H12O4
mdl
——
分子量
280.28
InChiKey
BDADRHKVFGYIRW-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    434.2±45.0 °C(Predicted)
  • 密度:
    1.290±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.4
  • 重原子数:
    21
  • 可旋转键数:
    3
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.06
  • 拓扑面积:
    52.6
  • 氢给体数:
    0
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    描述:
    methyl 4-(4-oxo-4H-chromen-2-yl)benzoate 在 hydrazine hydrate 、 三氯氧磷 作用下, 以 甲醇 为溶剂, 生成 2-(4-(5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)phenyl)-4H-chromen-4-one
    参考文献:
    名称:
    合成 Chromen-4-One-Oxadiazole 取代类似物作为有效的 β-葡萄糖醛酸酶抑制剂
    摘要:
    Chromen-4-one 取代的恶二唑类似物 1-19 已被合成、表征和评估对 β-葡萄糖醛酸酶的抑制作用。与标准 d-糖精酸 1,4 内酯 (IC50 = 48.1 ± 1.2 μM) 相比,所有类似物都表现出不同程度的 β-葡萄糖醛酸酶抑制活性,IC50 值范围在 0.8 ± 0.1–42.3 ± 0.8 μM 之间。已建立所有化合物的构效关系。进行分子对接研究以预测化合物与酶活性位点的结合相互作用。
    DOI:
    10.3390/molecules24081528
  • 作为产物:
    参考文献:
    名称:
    通过一氧化碳的原位生成钯催化的芳基(伪)卤化物的氯羰基化反应。
    摘要:
    已经开发了一种有效的钯催化的芳基(假)卤化物的氯羰基化反应,该反应可以使用多种羧酸衍生物。使用丁酰氯作为CO和Cl的混合来源,就不需要有毒的气态一氧化碳,从而促进了从容易获得的芳基(伪)卤化物合成高价值产品的需求。钯(0),黄药和胺碱的组合对于促进这种广泛适用的催化反应至关重要。总体而言,该反应可通过原位生成的芳酰氯的转化获得多种含羰基的产物。结合实验和计算研究,可以支持涉及原位生成CO的反应机理。
    DOI:
    10.1002/anie.202005891
点击查看最新优质反应信息

文献信息

  • Synthesis of novel flavone hydrazones: In-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies
    作者:Syahrul Imran、Muhammad Taha、Nor Hadiani Ismail、Syed Muhammad Kashif、Fazal Rahim、Waqas Jamil、Maywan Hariono、Muhammad Yusuf、Habibah Wahab
    DOI:10.1016/j.ejmech.2015.10.017
    日期:2015.11
    Thirty derivatives of flavone hydrazone (5-34) had been synthesized through a five-step reaction and screened for their a-glucosidase inhibition activity. Chalcone 1 was synthesized through aldol condensation then subjected through oxidative cyclization, esterification, and condensation reaction to afford the final products. The result for baker's yeast alpha-glucosidase (EC 3.2.1.20) inhibition assay showed that all compounds are active with reference to the IC50 value of the acarbose (standard drug) except for compound 3. Increase in activity observed for compounds 2 to 34 clearly highlights the importance of flavone, hydrazide and hydrazone linkage in suppressing the activity of a-glucosidase. Additional functional group on N-benzylidene moiety further enhances the activity significantly. Compound 5 (15.4 +/- 0.22 mu M), a 2,4,6-trihydroxy substituted compound, is the most active compound in the series. Other compounds which were found to be active are those having chlorine, fluorine, and nitro substituents. Compounds with methoxy, pyridine, and methyl substituents are weakly active. Further studies showed that they are not active in inhibiting histone deacetylase activity and do not possess any cytotoxic properties. QSAR model was being developed to further identify the structural requirements contributing to the activity. Using Discovery Studio (DS) 2.5, various 2D descriptors were being used to develop the model. The QSAR model is able to predict the pIC(50) and could be used as a prediction tool for compounds having the same skeletal framework. Molecular docking was done for all compounds using homology model of alpha-glucosidase to identify important binding modes responsible for inhibition activity. (C) 2015 Elsevier Masson SAS. All rights reserved.
  • Retinobenzoic acids. 2. Structure-activity relationships of chalcone-4-carboxylic acids and flavone-4'-carboxylic acids
    作者:Hiroyuki Kagechika、Emiko Kawachi、Yuichi Hashimoto、Koichi Shudo
    DOI:10.1021/jm00124a016
    日期:1989.4
    The structure-activity relationships of (E)-chalcone-4-carboxylic acids, which are retinoidal benzoic acids represented by R-Ph-X-Ph-COOH (4, X = -COCH = CH-), are discussed on the basis of differentiation-inducing activity on human promyelocytic leukemia cells HL-60. The activity was increased by the substitution of a bulky alkyl group(s) (R), and among such compounds, (E)-4-[3-(3,5-di-tert-butylphenyl)-3-oxo-1-propenyl]benzoic acid (Ch55) and (E)-4-[3-oxo-3-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1 -propenyl]benzoic acid (Ch80) are several times more active than retinoic acid. Though the stable conformer of chalcone derivatives is linear (s-cis form), the conformationally restricted analogue 4-(6,7,8,9-tetrahydro-6,6,9,9-tetramethyl-4H-4-oxonaphtho[2,3-b]py ran-2-yl)benzoic acid (Fv80) is more active than Ch80. While the effect of introduction of an oxygen atom varied, 4-[1-hydroxy-3-oxo-3-(5,6,7,8-tetrahydro-3-hydroxy-5,5,8,8-tetramethyl-2 - naphthalenyl)-1-propenyl]benzoic acid (Re80), regarded as a derivative of Ch80 with two additional hydroxyl groups, has very strong activity.
  • Preparative and regiochemical aspects of the palladium-catalyzed carbonylative coupling of 2-hydroxyaryl lodides with ethynylarenes
    作者:Pier Giuseppe Ciattini、Enrico Morera、Giorgio Ortar、Sabina Strano Rossi
    DOI:10.1016/s0040-4020(01)86572-8
    日期:1991.8
    The title reaction has been conveniently carried out in DMF at 60-degrees-C under 1 atm of CO pressure using DBU as the base and Pd(OAc)2(DPPF)2 as the catalyst to afford generally mixtures of flavones 4 and aurones 5 in varying yields, depending on the substituents in the both reactants. Factors controlling the regioselectivity for 4 or 5 formation in this and in similar, previously reported, coupling procedures have been examined.
  • Synthesis of 2-Phenyl-2,3,4,5-tetrshydro-1-benzoxepin-5-ones
    作者:Toshio Tatsuoka、Kayoko Imao、Kenji Suzuki、Makoto Shibata、Fumio Satoh、Seiji Miyano、Kunihiro Sumoto
    DOI:10.3987/com-89-s53
    日期:——
  • Da Re et al., Annali di Chimica, 1958, vol. 48, p. 762,765
    作者:Da Re et al.
    DOI:——
    日期:——
查看更多