摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

cis-5,6-diphenylbicyclo<3.1.0>hexan-2-one | 21414-81-3

中文名称
——
中文别名
——
英文名称
cis-5,6-diphenylbicyclo<3.1.0>hexan-2-one
英文别名
cis-5,6-diphenylbicyclo[3.1.0]hexan-2-one;rac.-trans-5,6-Diphenyl-bicyclo<3.1.0>hexanon-(2);(+/-)-1r,6c-Diphenyl-bicyclo<3.1.0>hexanon-(4);cis-5,6-Diphenylbicyclo<3.1.0>hexan-2-on;rac.-trans-5,6-Diphenyl-bicyclo[3.1.0]hexanon-(2);(1S,5S,6R)-5,6-diphenylbicyclo[3.1.0]hexan-2-one
cis-5,6-diphenylbicyclo<3.1.0>hexan-2-one化学式
CAS
21414-81-3;25129-49-1;95272-24-5;123050-46-4
化学式
C18H16O
mdl
——
分子量
248.324
InChiKey
IJXHRYRHSFUZEX-BZSNNMDCSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.4
  • 重原子数:
    19
  • 可旋转键数:
    2
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.28
  • 拓扑面积:
    17.1
  • 氢给体数:
    0
  • 氢受体数:
    1

反应信息

  • 作为反应物:
    描述:
    cis-5,6-diphenylbicyclo<3.1.0>hexan-2-one 在 sodium iodide 作用下, 生成 hex-2-oxo-3-yl)-propyl>-triphenylphosphonium-iodid
    参考文献:
    名称:
    Multiplicity and molecular flexibility in controlling molecular reactivity. Mechanistic and exploratory organic photochemistry
    摘要:
    DOI:
    10.1021/ja00846a029
  • 作为产物:
    描述:
    3-氧代环戊烷甲腈copper(l) iodide草酸对甲苯磺酸 作用下, 以 四氢呋喃乙醚正己烷甲苯 为溶剂, 反应 63.5h, 生成 cis-5,6-diphenylbicyclo<3.1.0>hexan-2-one
    参考文献:
    名称:
    General Theoretical Treatments of Solid-State Photochemical Rearrangements and a Variety of Contrasting Crystal versus Solution Photochemistry
    摘要:
    In continuing our investigations of control of excited state reactivity by inclusion in crystal lattices, we have encountered a variety of new examples of differing reactivity resulting from lattice restraints. Different theoretical treatments were tested and several proved applicable. Not only could the course of reactions imposed by the crystal lattice be predicted but also the ability to react versus lack of reactivity. For cyclohexenones with C-2 and C-5 substitution, either of two aryl groups at C-4 are available for migration; which one migrates depends on the lattice. One C-2 substituted and seven C-5 substituted cyclohexenones were investigated. Additionally some cyclopentenone photochemistry was investigated. Throughout, programming was developed to generate a ''mini crystal lattice'' having the appropriate space group symmetry and X-ray coordinates and with a central molecule surrounded by reactant molecules. Replacement of the central molecule with a transition state molecule provided a new ''mini-lattice''. Generally, the first diradical intermediate was used to simulate the reaction transition state. The mini-lattice was then subject to study. Overlap of the central, partially reacted species with the surrounding molecules provided one criterion. Molecular motion of the reactant excited state in forming the partially reacted species provided a test of least motion as a second criterion. A third test utilizing MM3 geometry optimization of the reacting species imbedded in the rigid mini-lattice, provided a measure of the increase in intra- and intermolecular energy of this molecule. A final approach determined the points of nearest molecule-lattice approach and mapped these in the form of a ''lock and key''; this has the advantage of indicating which interactions result in inhibition or lack thereof of a particular reaction route. Predicting ability to react proved important since reactivity falls into three categories: (I) no reaction in the lattice, (2) differing reactivity compared to solution, (3) the same behavior in solution. Perturbing an intermediate geometry toward that of the reactant and then determining the deformation energy provided a reactivity measure.
    DOI:
    10.1021/ja00124a008
点击查看最新优质反应信息

文献信息

  • Quantitative Cavities and Reactivity in Stages of Crystal Lattices:  Mechanistic and Exploratory Organic Photochemistry<sup>1</sup><sup>,</sup><sup>2</sup>
    作者:Howard E. Zimmerman、Evgueni E. Nesterov
    DOI:10.1021/ja0124562
    日期:2002.3.1
    solution. The stage behavior was investigated using X-ray analysis and Quantum Mechanics/Molecular Mechanics computations. This permitted us to determine the sources and details of the stage phenomenon. The analysis revealed how a product molecule as a neighbor affects reactivity. The computations were employed to follow the course of a solid-state reaction from reactant through the succeeding stages.
    在继续我们对固态有机光化学的研究中,我们一直在分阶段研究反应性现象。在这项研究中,我们展示了新的例子,其中光化学反应性在转化过程中的某个时间点发生不连续变化。在这些情况下,固体的反应过程不同于溶液中的反应过程。一个例子是2-甲基-4,4-二苯基环己烯酮的反应,在固态时遇到了一个不寻常的反应过程;并且,在两种可能的机制中,一种是通过同位素标记建立的。第二种情况是 4,5,5-三苯基环己烯酮。发现这种烯酮的固态反应产生了一种新的光化学转化,即 C 型重排,这是一个涉及 delta 到 alpha 芳基迁移的过程。在3-叔丁基-5的情况下,5-二苯基环己烯酮即使在溶液中也会发生C型重排。使用 X 射线分析和量子力学/分子力学计算来研究平台行为。这使我们能够确定舞台现象的来源和细节。分析揭示了作为邻居的产物分子如何影响反应性。计算用于跟踪从反应物到后续阶段的固态反应过程。此外,利用 Delta 密
  • Mechanistic and exploratory organic photochemistry. XLV. Di-.pi.-methane rearrangement of 1-methylene-4,4-diphenyl-2-cyclohexene and related photochemical processes
    作者:Howard Elliot Zimmerman、Gary E. Samuelson
    DOI:10.1021/ja01047a020
    日期:1969.9
  • Molecular control of excited cross-conjugated triene rearrangements. Exploratory and mechanistic organic photochemistry
    作者:Howard E. Zimmerman、Donald R. Diehl
    DOI:10.1021/ja00501a035
    日期:1979.3
  • Multiplicity and molecular flexibility in controlling molecular reactivity. Mechanistic and exploratory organic photochemistry
    作者:Howard E. Zimmerman、Frederick X. Albrecht、Michael J. Haire
    DOI:10.1021/ja00846a029
    日期:1975.6
  • General Theoretical Treatments of Solid-State Photochemical Rearrangements and a Variety of Contrasting Crystal versus Solution Photochemistry
    作者:Howard E. Zimmerman、Zhaoning Zhu
    DOI:10.1021/ja00124a008
    日期:1995.5
    In continuing our investigations of control of excited state reactivity by inclusion in crystal lattices, we have encountered a variety of new examples of differing reactivity resulting from lattice restraints. Different theoretical treatments were tested and several proved applicable. Not only could the course of reactions imposed by the crystal lattice be predicted but also the ability to react versus lack of reactivity. For cyclohexenones with C-2 and C-5 substitution, either of two aryl groups at C-4 are available for migration; which one migrates depends on the lattice. One C-2 substituted and seven C-5 substituted cyclohexenones were investigated. Additionally some cyclopentenone photochemistry was investigated. Throughout, programming was developed to generate a ''mini crystal lattice'' having the appropriate space group symmetry and X-ray coordinates and with a central molecule surrounded by reactant molecules. Replacement of the central molecule with a transition state molecule provided a new ''mini-lattice''. Generally, the first diradical intermediate was used to simulate the reaction transition state. The mini-lattice was then subject to study. Overlap of the central, partially reacted species with the surrounding molecules provided one criterion. Molecular motion of the reactant excited state in forming the partially reacted species provided a test of least motion as a second criterion. A third test utilizing MM3 geometry optimization of the reacting species imbedded in the rigid mini-lattice, provided a measure of the increase in intra- and intermolecular energy of this molecule. A final approach determined the points of nearest molecule-lattice approach and mapped these in the form of a ''lock and key''; this has the advantage of indicating which interactions result in inhibition or lack thereof of a particular reaction route. Predicting ability to react proved important since reactivity falls into three categories: (I) no reaction in the lattice, (2) differing reactivity compared to solution, (3) the same behavior in solution. Perturbing an intermediate geometry toward that of the reactant and then determining the deformation energy provided a reactivity measure.
查看更多

同类化合物

(E,Z)-他莫昔芬N-β-D-葡糖醛酸 (E/Z)-他莫昔芬-d5 (4S,5R)-4,5-二苯基-1,2,3-恶噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4R,4''R,5S,5''S)-2,2''-(1-甲基亚乙基)双[4,5-二氢-4,5-二苯基恶唑] (1R,2R)-2-(二苯基膦基)-1,2-二苯基乙胺 鼓槌石斛素 高黄绿酸 顺式白藜芦醇三甲醚 顺式白藜芦醇 顺式己烯雌酚 顺式-桑皮苷A 顺式-曲札芪苷 顺式-二苯乙烯 顺式-beta-羟基他莫昔芬 顺式-a-羟基他莫昔芬 顺式-3,4',5-三甲氧基-3'-羟基二苯乙烯 顺式-1,2-二苯基环丁烷 顺-均二苯乙烯硼酸二乙醇胺酯 顺-4-硝基二苯乙烯 顺-1-异丙基-2,3-二苯基氮丙啶 阿非昔芬 阿里可拉唑 阿那曲唑二聚体 阿托伐他汀环氧四氢呋喃 阿托伐他汀环氧乙烷杂质 阿托伐他汀环(氟苯基)钠盐杂质 阿托伐他汀环(氟苯基)烯丙基酯 阿托伐他汀杂质D 阿托伐他汀杂质94 阿托伐他汀内酰胺钠盐杂质 阿托伐他汀中间体M4 阿奈库碘铵 银松素 铒(III) 离子载体 I 钾钠2,2'-[(E)-1,2-乙烯二基]二[5-({4-苯胺基-6-[(2-羟基乙基)氨基]-1,3,5-三嗪-2-基}氨基)苯磺酸酯](1:1:1) 钠{4-[氧代(苯基)乙酰基]苯基}甲烷磺酸酯 钠;[2-甲氧基-5-[2-(3,4,5-三甲氧基苯基)乙基]苯基]硫酸盐 钠4-氨基二苯乙烯-2-磺酸酯 钠3-(4-甲氧基苯基)-2-苯基丙烯酸酯 重氮基乙酸胆酯酯 醋酸(R)-(+)-2-羟基-1,2,2-三苯乙酯 酸性绿16 邻氯苯基苄基酮 那碎因盐酸盐 那碎因[鹼] 达格列净杂质54 辛那马维林 赤藓型-1,2-联苯-2-(丙胺)乙醇 赤松素 败脂酸,丁基丙-2-烯酸酯,甲基2-甲基丙-2-烯酸酯,2-甲基丙-2-烯酸