摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-[[(4R,5S)-5-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-2,2-dimethyl-1,3-dioxolan-4-yl]methyl]-N-tetradecyltetradecan-1-amine | 382156-52-7

中文名称
——
中文别名
——
英文名称
N-[[(4R,5S)-5-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-2,2-dimethyl-1,3-dioxolan-4-yl]methyl]-N-tetradecyltetradecan-1-amine
英文别名
——
N-[[(4R,5S)-5-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-2,2-dimethyl-1,3-dioxolan-4-yl]methyl]-N-tetradecyltetradecan-1-amine化学式
CAS
382156-52-7
化学式
C39H77NO4
mdl
——
分子量
624.045
InChiKey
KLFZPMVTLVMQTF-RQOYOAKWSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    14.2
  • 重原子数:
    44
  • 可旋转键数:
    29
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    40.2
  • 氢给体数:
    0
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    N-[[(4R,5S)-5-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-2,2-dimethyl-1,3-dioxolan-4-yl]methyl]-N-tetradecyltetradecan-1-amine三氟乙酸 作用下, 反应 51.0h, 生成 1-deoxy-1-[methyl(ditetradecyl)ammonio]-D-arabinitol
    参考文献:
    名称:
    Design, Synthesis, and Transfection Biology of Novel Cationic Glycolipids for Use in Liposomal Gene Delivery
    摘要:
    The molecular structure of the cationic lipids used in gene transfection strongly influences their transfection efficiency. High transfection efficiencies of non-glycerol-based simple monocationic transfection lipids with hydroxyethyl headgroups recently reported by us (Banerjee et al. J. Med. Chem. 1999, 42, 4292-4299) are consistent with the earlier observations that the presence of hydroxyl functionalities in the headgroup region of a cationic lipid contributes favorably in liposomal gene delivery. Using simple sugar molecules as the source of multiple hydroxyl functionalities in the headgroup region of the transfection lipids, we have synthesized four novel simple monocationic transfection lipids, namely, 1-deoxy-1-[dihexadecyl(methyl)ammonio]-D-xylitol (1), 1-deoxy-1-[methyl(ditetradecyl)ammonio]-D-arabinitol (2), 1-deoxy-1-[dihexadecyl(methyl)ammonio]-D-arabinitol (3) and 1-deoxy-1-[methyl(dioctadecyl)ammonio]-D-arabinitol (4), containing hydrophobic aliphatic tails and the hydrophilic arabinosyl or xylose sugar groups linked directly to the positively charged nitrogen atom. Syntheses, chemical characterizations, and the transfection biology of these novel transfection lipids 1-4 are described in this paper. Lipid 1, the xylosyl derivative, showed maximum transfection on COS-1 cells. All the lipids showed transfection with cholesterol as colipid and not with dioleoylphosphatidylethanolamine (DOPE). Radioactive quantitation of free and complexed DNA combined with ethidium bromide exclusion measurements suggest that though nearly 70% of the DNA exists as complexed DNA, the DNA may not have condensed as was observed with other cationic lipids. Presence of additional (more than two) hydroxyl functionalities in the headgroup of the cationic lipids appears to have improved the transfection efficiency and made these lipids less cytotoxic compared to two-hydroxyl derivatives.
    DOI:
    10.1021/jm000466s
  • 作为产物:
    描述:
    十四胺 在 sodium tetrahydroborate 、 magnesium sulfate 作用下, 以 甲醇二氯甲烷 为溶剂, 反应 37.5h, 生成 N-[[(4R,5S)-5-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-2,2-dimethyl-1,3-dioxolan-4-yl]methyl]-N-tetradecyltetradecan-1-amine
    参考文献:
    名称:
    Design, Synthesis, and Transfection Biology of Novel Cationic Glycolipids for Use in Liposomal Gene Delivery
    摘要:
    The molecular structure of the cationic lipids used in gene transfection strongly influences their transfection efficiency. High transfection efficiencies of non-glycerol-based simple monocationic transfection lipids with hydroxyethyl headgroups recently reported by us (Banerjee et al. J. Med. Chem. 1999, 42, 4292-4299) are consistent with the earlier observations that the presence of hydroxyl functionalities in the headgroup region of a cationic lipid contributes favorably in liposomal gene delivery. Using simple sugar molecules as the source of multiple hydroxyl functionalities in the headgroup region of the transfection lipids, we have synthesized four novel simple monocationic transfection lipids, namely, 1-deoxy-1-[dihexadecyl(methyl)ammonio]-D-xylitol (1), 1-deoxy-1-[methyl(ditetradecyl)ammonio]-D-arabinitol (2), 1-deoxy-1-[dihexadecyl(methyl)ammonio]-D-arabinitol (3) and 1-deoxy-1-[methyl(dioctadecyl)ammonio]-D-arabinitol (4), containing hydrophobic aliphatic tails and the hydrophilic arabinosyl or xylose sugar groups linked directly to the positively charged nitrogen atom. Syntheses, chemical characterizations, and the transfection biology of these novel transfection lipids 1-4 are described in this paper. Lipid 1, the xylosyl derivative, showed maximum transfection on COS-1 cells. All the lipids showed transfection with cholesterol as colipid and not with dioleoylphosphatidylethanolamine (DOPE). Radioactive quantitation of free and complexed DNA combined with ethidium bromide exclusion measurements suggest that though nearly 70% of the DNA exists as complexed DNA, the DNA may not have condensed as was observed with other cationic lipids. Presence of additional (more than two) hydroxyl functionalities in the headgroup of the cationic lipids appears to have improved the transfection efficiency and made these lipids less cytotoxic compared to two-hydroxyl derivatives.
    DOI:
    10.1021/jm000466s
点击查看最新优质反应信息

文献信息

  • Design, Synthesis, and Transfection Biology of Novel Cationic Glycolipids for Use in Liposomal Gene Delivery
    作者:Rajkumar Banerjee、Yenugonda Venkata Mahidhar、Arabinda Chaudhuri、Vijaya Gopal、Nalam Madhusudhana Rao
    DOI:10.1021/jm000466s
    日期:2001.11.1
    The molecular structure of the cationic lipids used in gene transfection strongly influences their transfection efficiency. High transfection efficiencies of non-glycerol-based simple monocationic transfection lipids with hydroxyethyl headgroups recently reported by us (Banerjee et al. J. Med. Chem. 1999, 42, 4292-4299) are consistent with the earlier observations that the presence of hydroxyl functionalities in the headgroup region of a cationic lipid contributes favorably in liposomal gene delivery. Using simple sugar molecules as the source of multiple hydroxyl functionalities in the headgroup region of the transfection lipids, we have synthesized four novel simple monocationic transfection lipids, namely, 1-deoxy-1-[dihexadecyl(methyl)ammonio]-D-xylitol (1), 1-deoxy-1-[methyl(ditetradecyl)ammonio]-D-arabinitol (2), 1-deoxy-1-[dihexadecyl(methyl)ammonio]-D-arabinitol (3) and 1-deoxy-1-[methyl(dioctadecyl)ammonio]-D-arabinitol (4), containing hydrophobic aliphatic tails and the hydrophilic arabinosyl or xylose sugar groups linked directly to the positively charged nitrogen atom. Syntheses, chemical characterizations, and the transfection biology of these novel transfection lipids 1-4 are described in this paper. Lipid 1, the xylosyl derivative, showed maximum transfection on COS-1 cells. All the lipids showed transfection with cholesterol as colipid and not with dioleoylphosphatidylethanolamine (DOPE). Radioactive quantitation of free and complexed DNA combined with ethidium bromide exclusion measurements suggest that though nearly 70% of the DNA exists as complexed DNA, the DNA may not have condensed as was observed with other cationic lipids. Presence of additional (more than two) hydroxyl functionalities in the headgroup of the cationic lipids appears to have improved the transfection efficiency and made these lipids less cytotoxic compared to two-hydroxyl derivatives.
查看更多