Synthesis, Screening and in silico Simulations of Anti-Parasitic Propamidine/Benzimidazole Derivatives
作者:Carlos Mendez-Cuesta、Miguel Herrera-Rueda、Sergio Hidalgo-Figueroa、Hugo Tlahuext、Rosa Moo-Puc、Juan Chale-Dzul、Manuel Chan-Bacab、Benjamín Ortega-Morales、Emanuel Hernandez-Nunez、Oscar Mendez-Lucio、Jose Medina-Franco、Gabriel Navarrete-Vazquez
DOI:10.2174/1573406412666160811112408
日期:2017.1.30
Background: We designed hybrid molecules between propamidine and benzimidazole in
order to retain the antiprotozoal action, but decreasing the toxic effect of the molecule.
Objective: Design and prepare 12 hybrids for testing their antiparasitic effect over three protozoa:
Giardia intestinalis, Trichomonas vaginalis and Leishmania mexicana, as well as conduct several in
silico simulations such as toxicological profile, molecular docking and molecular dynamics in order
to understand their potential mode of action.
Methods: Hybrids 1-3, 6-9 and 12 were obtained using a chemical pathway previously reported.
Compounds 4, 5, 10 and 11 were prepared using a one-pot reduction–cyclization reaction. The in vitro
antiparasitic and cytotoxic activities of these compounds were conducted. It was calculated several
properties such as toxicity, PK behavior, as well as docking studies and molecular dynamics of
the most active compound performed in a DNA sequence dodecamer in comparison with propamidine.
Results: Compound 2 was 183, 127 and 202 times more active against G. intestinalis than metronidazole,
pentamidine and propamidine. It was eleven times more active than pentamidine against L.
mexicana. This compound showed low in vitro mammalian cytotoxicity. Molecular simulations
showed a stable complex 2-DNA that occurred in the minor groove, analogous to propamidine-DNA
complex.
Conclusion: Compound 2, exhibited the higher bioactivity, especially towards G. intestinalis and L.
mexicana. This study demonstrated that the replacement of benzimidazole scaffold instead of toxic
amidine group in propamidine, results in an enhancement of antiprotozoal bioactivity. The preliminary
molecular dynamics simulation suggests that the ligand–DNA complex is stable.
背景:我们设计了丙脒和苯并咪唑的混合分子,以保留抗原虫作用,但降低分子的毒性:我们设计了丙脒(propamidine)和苯并咪唑(benzimidazole)的杂交分子,以保留其抗寄生虫作用,同时降低分子的毒性。 目的设计并制备 12 种杂交分子,以测试它们对三种原生动物(肠道贾第虫、阴道毛滴虫和墨西哥利什曼原虫)的抗寄生虫作用,并进行多种硅学模拟,如毒理学剖面、分子对接和分子动力学,以了解它们的潜在作用模式。 方法:利用以前报道过的化学途径获得了杂交分子 1-3、6-9 和 12。 利用一锅还原-环化反应制备了化合物 4、5、10 和 11。对这些化合物进行了体外抗寄生虫和细胞毒活性研究。结果表明:化合物 2 的抗寄生虫活性为 183,5、10 和 11 为 127,而化合物 1 的抗寄生虫活性为 187,5、10 和 11 为 127:与甲硝唑、喷他脒和丙脒相比,化合物 2 对肠杆菌的活性分别为 183、127 和 202 倍。它对 L. mexicana 的活性是戊脒的 11 倍。该化合物对哺乳动物的体外细胞毒性较低。分子模拟显示,在小沟中出现了稳定的 2-DNA 复合物,类似于丙脒-DNA 复合物。 结论:化合物 2 表现出更高的生物活性,尤其是对肠杆菌属(G. intestinalis)和墨西哥鲎(L. mexicana)。这项研究表明,用苯并咪唑支架代替丙脒中的有毒脒基,可提高抗原虫生物活性。初步的分子动力学模拟表明,配体-DNA 复合物是稳定的。