中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
17Alpha-羟基黄体酮 | 17-hydroxyprogesterone | 68-96-2 | C21H30O3 | 330.467 |
—— | Δ4.17-Pregnadienon-(3) | 122406-95-5 | C21H30O | 298.469 |
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
17Alpha-羟基黄体酮 | 17-hydroxyprogesterone | 68-96-2 | C21H30O3 | 330.467 |
We previously isolated three monomeric dihydrodiol dehydrogenases, DD1, DD2 and DD4, from human liver, and cloned a cDNA (C9) thought to encode DD2, which is identical with those for human bile-acid-binding protein and an oxidoreductase of human colon carcinoma HT29 cells. In the present study we have provided evidence that the C9 cDNA clone encodes DD1, not DD2. A recombinant enzyme expressed from the cDNA in a bacterial system was purified, and its catalytic properties, bile-acid-binding ability and primary sequence were compared with those of the hepatic dihydrodiol dehydrogenases. The results show that DD1 encoded by C9 possesses prostaglandin F synthase activity but low affinity for lithocholic acid, whereas DD2, showing differences of six amino acid residues from the DD1 sequence, exhibited high-affinity binding for the bile acid. Refined relationship between dihydrodiol dehydrogenases and their related proteins of human tissues is proposed.
It has been suggested that 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) is a T-cell differentiation marker in mice. In the human, this enzyme has generally been associated with types 1 and 2 17beta-HSDs, which belong to the short-chain alcohol dehydrogenase family, whereas the rat, rabbit, pig and bovine 20alpha-HSDs are members of the aldoketo reductase superfamily, which also includes the 3alpha-HSD family. In this study, we report the cloning, from a human skin cDNA library, of a cDNA that shows, after transfection into human embryonic kidney (HEK-293) cells, high 20alpha-HSD activity but negligible 3alpha- and 17beta-hydroxysteroid dehydrogenase activities. A comparison of the amino acid sequence of the human 20alpha-HSD with those of other related 20alpha- and 3alpha-HSDs indicates that the human 20alpha-HSD shares 79.9, 68.7 and 52.3% identity with rabbit, rat and bovine 20alpha-HSDs, whereas it shows 97, 84 and 65% identity with human type 3, type 1 and rat 3alpha-HSDs. In contrast, the enzyme shares only 15.2 and 15.0% identity with type 1 and type 2 human 17beta-HSDs. DNA analysis predicts a protein of 323 amino acids, with a calculated molecular weight of 36 767 Da. In intact transfected cells, the human 20alpha-HSD preferentially catalyzes the reduction of progesterone to 20alpha-hydroxyprogesterone with a K(m) value of 0.6 microM, the reverse reaction (oxidation) being negligible. In a cell cytosolic preparation, the enzyme could use both NADPH and NADH as cofactors, but NADPH, which gave 4-fold lower K(m) values, was preferred. We detected the expression of 20alpha-HSD mRNA in liver, prostate, testis, adrenal, brain, uterus and mammary-gland tissues and in human keratinocyte (HaCaT) cells. The present study clearly indicates that the genuine human 20alpha-HSD belongs to the aldoketo reductase family, like the 20alpha-HSDs from other species.