摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

6'-Apo-β-caroten-6'-al | 5056-13-3

中文名称
——
中文别名
——
英文名称
6'-Apo-β-caroten-6'-al
英文别名
6'-Apo-β-carotin-6'-al;6'-Apo-beta-carotenal;(2E,4E,6E,8E,10E,12E,14E,16E,18E)-4,8,13,17-tetramethyl-19-(2,6,6-trimethylcyclohexen-1-yl)nonadeca-2,4,6,8,10,12,14,16,18-nonaenal
6'-Apo-β-caroten-6'-al化学式
CAS
5056-13-3
化学式
C32H42O
mdl
——
分子量
442.685
InChiKey
WFSDNSUFYNCHHL-DVOXXZCQSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    604.4±24.0 °C(Predicted)
  • 密度:
    0.950±0.06 g/cm3(Temp: 20 °C; Press: 760 Torr)(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    10.3
  • 重原子数:
    33
  • 可旋转键数:
    10
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.34
  • 拓扑面积:
    17.1
  • 氢给体数:
    0
  • 氢受体数:
    1

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    6'-Apo-β-caroten-6'-al二异丁基氢化铝 作用下, 以 四氢呋喃 为溶剂, 反应 145.0h, 生成 4'-Apo-β-caroten-4'-al
    参考文献:
    名称:
    多烯链长和受体取代基对类胡萝卜素自由基阳离子稳定性的影响
    摘要:
    采用电化学和光学方法研究了末端酯基、醛基和氰基取代的具有不同骨架双键数的三类类胡萝卜素自由基阳离子的稳定性。乙酯是 8'-apo-β-caroten-8'-oate (I)、6'-apo-β-caroten-6'-oate (II) 和 4'-apo-β-caroten-4' -燕麦(III);醛类是 8'-apo-β-caroten-8'-al (IV)、6'-apo-β-caroten-6'-al (V) 和 4'-apo-β-caroten-4'-人(六);氰基化合物为8'-apo-β-胡萝卜素-8'-腈(VII)、6'-apo-β-胡萝卜素-6'-腈(VIII)、4'-apo-β-胡萝卜素-4 '-腈(IX)。循环伏安法(CV)和奥斯特杨方波伏安法(OSWV)结果表明,类胡萝卜素自由基阳离子的稳定性取决于共轭链双键的数量。对于酯类,烯烃链越长,自由基阳离子越不稳定。相反,对于醛类和
    DOI:
    10.1021/jp994436g
  • 作为产物:
    描述:
    β-阿朴胡萝卜素醛二异丁基氢化铝 作用下, 以 四氢呋喃 为溶剂, 反应 145.0h, 生成 6'-Apo-β-caroten-6'-al
    参考文献:
    名称:
    多烯链长和受体取代基对类胡萝卜素自由基阳离子稳定性的影响
    摘要:
    采用电化学和光学方法研究了末端酯基、醛基和氰基取代的具有不同骨架双键数的三类类胡萝卜素自由基阳离子的稳定性。乙酯是 8'-apo-β-caroten-8'-oate (I)、6'-apo-β-caroten-6'-oate (II) 和 4'-apo-β-caroten-4' -燕麦(III);醛类是 8'-apo-β-caroten-8'-al (IV)、6'-apo-β-caroten-6'-al (V) 和 4'-apo-β-caroten-4'-人(六);氰基化合物为8'-apo-β-胡萝卜素-8'-腈(VII)、6'-apo-β-胡萝卜素-6'-腈(VIII)、4'-apo-β-胡萝卜素-4 '-腈(IX)。循环伏安法(CV)和奥斯特杨方波伏安法(OSWV)结果表明,类胡萝卜素自由基阳离子的稳定性取决于共轭链双键的数量。对于酯类,烯烃链越长,自由基阳离子越不稳定。相反,对于醛类和
    DOI:
    10.1021/jp994436g
点击查看最新优质反应信息

文献信息

  • Synthesen in der Carotinoid-Reihe. 15. Mitteilung Synthesen in der β-Carotinal- und β-Carotinal-Reihe
    作者:R. Rüegg、M. Montavon、G. Ryser、G. Saucy、U. Schwieter、O. Isler
    DOI:10.1002/hlca.19590420328
    日期:——
    To study the oxidative degradation of p-carotene to vitamin A in the animal body, a number of possible intermediates have been prepared. Starting with 15,15′-dehydro-β-apo-12′-carotenal(C25) vinylogous series of polyene aldehydes and acetates with 25 to 40 carbon atoms have been synthesized by successive enol ether condensations. The synthetic β-apo-8′-carotenal(C30) and β-apo-8′-carotenal(C30) were
    为了研究对胡萝卜素在动物体内氧化降解为维生素A的方法,已制备了许多可能的中间体。首先,通过连续的烯醇醚缩合反应合成了15,15'-脱氢-β-apo-12'-胡萝卜素(C 25)乙烯基系列多烯醛和具有25至40个碳原子的乙酸酯。合成的β-apo-8'-胡萝卜素(C 30)和β-apo-8'-胡萝卜素(C 30)与β-胡萝卜素的高锰酸盐氧化产物及其相应的醇(通过KARRER分离)相同。
  • Correlation of fluorescence quenching in carotenoporphyrin dyads with the energy of intramolecular charge transfer states. Effect of the number of conjugated double bonds of the carotenoid moiety
    作者:Fernando Fungo、Luis Otero、Edgardo Durantini、William J. Thompson、Juana J. Silber、Thomas A. Moore、Ana L. Moore、Devens Gust、Leonides Sereno
    DOI:10.1039/b209694c
    日期:2003.1.16
    The electrochemistry of a series of non-symmetric synthetic carotenoids, with different conjugated double bounds chain lengths (5 to 11) is reported. The values of the first oxidation potentials of the carotenoids were evaluated by digital simulation of the experimental cyclic voltammograms. There is a clear relationship between calculated (AM1) HOMO energies of neutral carotenoids with their conjugated chain length, indicating that the change of solvation energy of carotenoids is small throughout the series, and that the electron-donating ability of carotenoids increases with the length of the conjugated chain. Carotenoids had been previously used to design carotenoporphyrin (C–P) molecular dyads. Carotenoid oxidation potentials and the reduction potential of the porphyrin moiety were used in order to calculate the energy of intramolecular charge transfer state in C–P dyads. Correlation of porphyrin fluorescence quenching of these dyads with the energy of the charge transfer state is reported, showing that effective quenching is only possible for carotenoids with more than eight conjugated double bonds.
    报道了一系列非对称合成类胡萝卜素的电化学特性,这些类胡萝卜素具有不同的共轭双键链长度(从5到11)。通过对实验循环伏安图的数字模拟,评估了类胡萝卜素的首次氧化电位。结果表明,中性类胡萝卜素的计算(AM1)HOMO能量与其共轭链长度之间存在明显关系,表明类胡萝卜素的溶剂化能在整个系列中变化较小,并且类胡萝卜素的给电子能力随共轭链的长度增加而增强。类胡萝卜素以前被用于设计类胡萝卜素-卟啉(C–P)分子二聚体。类胡萝卜素的氧化电位和卟啉部分的还原电位被用来计算C–P二聚体中分子内电荷转移态的能量。报告了这些二聚体的卟啉荧光淬灭与电荷转移态能量的相关性,结果表明,只有在具有超过八个共轭双键的类胡萝卜素中,才能实现有效的淬灭。
  • Schwieter,U. et al., Helvetica Chimica Acta, 1966, vol. 49, p. 369 - 390
    作者:Schwieter,U. et al.
    DOI:——
    日期:——
  • Carotenoid Photoprotection in Artificial Photosynthetic Antennas
    作者:Miroslav Kloz、Smitha Pillai、Gerdenis Kodis、Devens Gust、Thomas A. Moore、Ana L. Moore、Rienk van Grondelle、John T. M. Kennis
    DOI:10.1021/ja1103553
    日期:2011.5.11
    A series of phthalocyanine carotenoid dyads in which a phenylamino group links a phthalocyanine to carotenoids having 8-11 backbone double bonds were examined by visible and near-infrared femtosecond pump-probe spectroscopy combined with global fitting analysis. The series of molecules has permitted investigation of the role of carotenoids in the quenching of excited states of cyclic tetrapyrroles. The transient behavior varied dramatically with the length of the carotenoid and the solvent environment. Clear spectroscopic signatures of radical species revealed photoinduced electron transfer as the main quenching mechanism for all dyads dissolved in a polar solvent (THF), and the quenching rate was almost independent of carotenoid length. However, in a nonpolar solvent (toluene), quenching rates displayed a strong dependence on the conjugation length of the carotenoid and the mechanism did not include charge separation. The lack of any rise time components of a carotenoid S-1 signature in all experiments in toluene suggests that an excitonic coupling between the carotenoid S-1 state and phthalocyanine Q state, rather than a conventional energy transfer process, is the major mechanism of quenching. A pronounced inhomogeneity of the system was observed and attributed to the presence of a phenyl-amino linker between phthalocyanine and carotenoids. On the basis of accumulated work on various caroteno phthalocyanine dyads and triads, we have now identified three mechanisms of tetrapyrrole singlet excited state quenching by carotenoids in artificial systems: (i) Car Pc electron transfer and recombination; (ii)(1) Pc to Car S-1 energy transfer and fast internal conversion to the Car ground state; (iii) excitonic coupling between Pc-1 and Car S-1 and ensuing internal conversion to the ground state of the carotenoid. The dominant mechanism depends upon the exact molecular architecture and solvent environment. These synthetic systems are providing a deeper understanding of structural and environmental effects on the interactions between carotenoids and tetrapyrroles and thereby better defining their role in controlling natural photosynthetic systems.
  • CAROTENOID PARTICLES AND USES THEREOF
    申请人:IP SCIENCE LIMITED
    公开号:US20170304448A1
    公开(公告)日:2017-10-26
    This invention relates to the incorporation of bioactive cargo molecules into particles with carotenoids, such as lycopene. The incorporation of a cargo molecule into a carotenoid particle may for example increase the bioavailability of the cargo molecule in the bloodstream compared to other delivery systems. Carotenoid particles as described herein may be useful in the formulation of therapeutic and nutritional compounds for oral administration to individuals.
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定